

On the Agenda

\square The Crossing-Number Lemma
\square Applications to combinatorial problems

Historical Perspective

Paul Erdős (born 1913 in Hungary, died 1996) was one of the greatest mathematicians of the $20^{\text {th }}$ century. He published thousands of research papers during about 70 years, most of which attacked problems in combinatorial geometry. Due to their difficulty, they were nicknamed "Hard Erdős Problems." In 1982/3, the so-called crossing-number lemma, motivated by optimization problems in chip design, was proven. Only in 1998 Székely discovered that many hard Erdős problems can be solved (at least partially, but yielding no worse bounds) by ridiculously simple applications of this lemma. This opened a new era in combinatorial geometry, e.g., for proving a mile-stone upper bound on the complexity of the $k^{\text {th }}$ level in an arrangement of n lines.

The Crossing Number

The crossing number of a graph G, \#cr(G), is the minimum number of edge crossings in a planar drawing of G.
\square Corollary of Euler's formula: In every simple* planar graph $e \leq 3 v-6$ (where e and v are the numbers of edges and vertices, respectively).
\square Hence a graph in which $e>3 v-6$ cannot be planar. For example:

$$
v=5
$$

$3 v-6=9$
$e=10$
\#cr $=1$

Center for Graphics and Geometric Computing, Technion

The Crossing-Number Lemma

\square [Ajtai, Chvátal, Newborn, and Szemerédi, 1982] and [Leighton, 1983].
Originally proven by induction on the graph complexity.
\square Let G be a simple graph with v vertices and $e \geq 4 v$ edges. Then:

$$
\# \operatorname{cr}(G)=\Omega\left(e^{3} / v^{2}\right)
$$

- Remark: "Simple" means

A Probabilistic Proof (Chazelle, Sharir, Welzl)

\square Consider a planar embedding of a graph with v vertices, e edges, and $c=\# \mathrm{cr}$ pairs of crossing edges.
\square By Euler's formula $c \geq e-(3 v-6)>e-3 v$. (Why?)
\square Choose a random subset of the vertices, each vertex with probability p (to be defined later).
The expected number of vertices, edges, and crossings in the induced subgraph are $p v, p^{2} e$, and $p^{4} c$, respectively.
\square That is, $p^{4} c>p^{2} e-3 p v$ (why?). Hence, $c>e / p^{2}-3 v / p^{3}$. Choosing $p=4 \mathrm{v} / \mathrm{e}$ (thus, $0 \leq p \leq 1$) yields $c>e^{3} /\left(16 v^{2}\right)-3 e^{3} /\left(64 v^{2}\right)=e^{3} /\left(64 v^{2}\right)$.
\square Question: Why at all is this a proof?
\square The constant can be improved (enlarged) from $1 / 64=0.0156 \ldots$ to $4 / 135=0.0296 \ldots$ (even more).

Application I: Segment Intersections

\square Given a complete graph G with n points in the plane in general position (no three collinear points).
\square Problem: What is the crossing number of G ?
\square Simple upper bound: O(n^{4}) intersections. (Why?)
\square Lower bound (by the lemma): $\Omega\left(\left(n^{2}\right)^{3} / n^{2}\right)=\Omega\left(n^{4}\right)$
That is, the solution is a tight bound of $\Theta\left(n^{4}\right)$.
\square Question: Why can we apply the lemma?
\square Question: Does it matter if the graph is geometric? (A geometric graph is made of straight line-segments only.)

Application II: Point-Line Incidences

\square Let P be a set of n distinct points and L a set of ℓ distinct lines.
\square An incidence of P and L is a pair (p, q), where $p \in P$, $q \in L$, and p lies on q. $\#(P, L)$ is the number of such incidences.

The minimum possible value of $\# i(P, L)$ is obviously 0 .
\square What is the maximum possible value of $\# i(P, L)$?
Clearly, $\# \mathrm{i}=\mathrm{O}(n \ell)$. Can we do better?
Theorem: $\# \mathrm{i}=\mathrm{O}\left((n \ell)^{2 / 3}+n+\ell\right)$
(note the role of the ($n+\ell$) term)

Proof of the P/L-I Theorem

\square For a given point-set P and line-set L, construct a graph in which each point in P is a vertex, and an edge connects every pair of consecutive points along a line of L.

\square For each line $q, e(q)=v(q)-1$. (Why?)
\square Sum up over all lines in L to obtain $e=\# i-\ell$. (Why?)
Trivially, in the graph $\# \mathrm{cr} \leq \ell^{2}$. (Why?)

Proof of the P/L-I Theorem (cont.)

$\begin{aligned} & \text { Case 1: } e \leq 4 n \\ & \rightarrow 4 n \geq \# \mathrm{i}-\ell \\ & \rightarrow \# \mathrm{i} \leq 4 n+\ell \\ & \rightarrow \# i=O(n+\ell) \end{aligned}$	$\begin{aligned} & \text { Case 2: } e \quad \geq 4 n \\ & \# \mathrm{cr}=\Omega\left(e^{3} / n^{2}\right)=\Omega\left((\# \mathrm{i}-\ell)^{3} / n^{2}\right) \\ & \# \mathrm{cr}=\mathrm{O}\left(\ell^{2}\right) \\ & \rightarrow(\# \mathrm{i}-\ell)^{3}=\mathrm{O}\left(n^{2} \ell^{2}\right) \\ & \rightarrow \# \mathrm{i}=\mathrm{O}\left((n \ell)^{2 / 3}+\ell\right) \end{aligned}$
$\# \mathrm{i}=\mathrm{O}\left((n \ell)^{2 / 3}+n+\ell\right)$	

Note: in the special case $\ell=n, \# \mathrm{i}=\mathrm{O}\left(n^{4 / 3}\right)$.

Application III (Number Theory)

\square Let A be a set of n distinct integer numbers.
$\square A \cdot A+A$ is the set of integers created by multiplying two elements from A, and adding another element.
\square Clearly,
$k=|A \cdot A+A|=\Omega(n)$ (but not completely trivially, since, e.g., $(-2) \cdot(-2)+(-2)=1 \cdot 1+1$, so why?), and
$k=\mathrm{O}\left(n^{3}\right)$. (Why?)
\square How small can k really be?

Solution

\square Let S be a set of points: $S=\{(x, y) \mid x \in A, y \in A \cdot A+A\}$.
Obviously, $|S|=n k$.
\square Draw all the lines of the form $y=a_{i} x+a_{j}$, where $a_{i}, a_{j} \in A$.
\square Observations (justify!):

1. There are exactly n^{2} such lines;
2. Each such line passes through exactly n points of S.
\square Therefore, $\# \mathrm{i}=n^{3}$.

Center for Graphics and Geometric Computing, Technion

Applying the Crossing-Number Lemma

\square Recall: $n k$ points, n^{2} lines.
\square According to the point/line-incidences theorem, $n^{3}=\# \mathrm{i}=\mathrm{O}\left(\left((n k) n^{2}\right)^{2 / 3}+n^{2}+n k\right)=\mathrm{O}(n^{2} k^{2 / 3} \underbrace{+n^{2}+n k})$.
\square But: $n^{2}=\mathrm{O}\left(n^{2} k^{2 / 3}\right)$ and
$k \leq n^{3} \rightarrow \underset{x^{1 / 3}}{ } k^{1 / 3} \leq n \underset{\rightarrow k^{2 / 3}}{\rightarrow} n k \leq n^{2} k^{2 / 3}$!
So these two terms
\square That is, are redundant!
$n^{3}=\mathrm{O}\left(n^{2} k^{2 / 3}\right) \rightarrow k^{2 / 3}=\Omega(n) \rightarrow k=\Omega\left(n^{3 / 2}\right)$.

Center for Graphics and Geometric Computing, Technion

