



## An O( $n^{3}$ )-Time Triangulation Algorithm

$\square$ Repeat

- Select two sites.
- If the edge connecting them does not intersect previously kept edges, keep it.
Until all faces are triangles.
$\square$ Question: Why $O\left(n^{3}\right)$ time?
$\square$ Question: Why is the algorithm guaranteed to stop before running out of edges?

$\square$ Answer: Because every nontriangular face has a diagonal that was not processed yet.
(Why?!)


## An O( $n \log n$ )-Time Triangulation Algorithm

$\square$ Construct the convex hull of the points, and connect one arbitrary vertex to all others.
$\square$ Insert the other sites one after the other...
$\square$ Two possibilities:
$\square$ Point inside a triangle:
One triangle becomes three.


Point on an edge:
Two triangles become four.



Question:
Why $\mathrm{O}(n \log n)$ time?


## Number of Triangles

$\square$ The number of triangles $t$ in a triangulation of $n$ points depends on the number of vertices $h$ on the convex hull: $t=(h-2)+2(n-h)=2 n-h-2$.

$h=6 \rightarrow t=8$
$n=8$


$$
h=5 \rightarrow t=9
$$

## Quality Triangulations

$\square$ Consider a triangulation $T$.
$\square$ Let $\alpha(T)=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{3 t}\right)$ be the vector of angles in the triangulation $T$ sorted in increasing order.
$\square$ A triangulation $T_{1}$ is "better" than $T_{2}$ if $\alpha\left(T_{1}\right)>\alpha\left(T_{2}\right)$ in a lexicographically order.
$\square$ The Delaunay triangulation is the "best" (avoiding, long skinny triangles, as much as possible).

Good:


Bad:


## Thales's Theorem

- Theorem:

Let $C$ be a circle, and $\ell$ a line intersecting $C$ at the points $a$ and $b$. Let $p, q, r$, and $s$ be points lying on the same side of $\ell$, where $p$ and $q$ are on $C, r$ inside $C$, and $s$ outside $C$. Then:

$$
\angle a r b>\angle a p b=\angle a q b>\angle a s b
$$

$\square$ Proof omitted.
(Thales proved the theorem directly; one can deduce it from the sine theorem.)



## Improving a Triangulation

$\square$ In any convex quadrangle, an edge flip is possible.
(Why? Why isn't it possible in a concave triangle?)
Claim: If this flip improves the triangulation locally, it also improves the global triangulation. (Why?)


If an edge flip improves the triangulation (locally and hence globally), the original edge is called illegal.

## Illegal Edges

$\square$ Lemma: An edge pq is illegal iff any of its opposite vertices is inside the circle defined by the other three vertices.
$\square$ Proof: By Thales's theorem.
$\square$ Moreover, a convex quadrangle in general position has exactly one legal diagonal.


Theorem: A Delaunay triangulation does not contain illegal edges. (Otherwise it can be improved locally.)
$\square$ Corollary: A triangle is Delaunay iff the circle through its vertices is empty of other sites.
$\square$ Observation: The Delaunay triangulation is not unique if more than three sites are cocircular.


## An $\Theta\left(n^{4}\right)$-Time Delaunay Triangulation

$\square$ For all triples of sites pqr:

- If the circle through $p, q, r$ does not contain any other site, keep the triangle $\Delta p q r$.
$\square$ Complexity: $\Theta\left(n^{3}\right)$ triples, $\Theta(n)$ work per triple;
Total: $\Theta\left(n^{4}\right)$ time.
(Space complexity: $\Theta(n)$. )


## The In-Circle Test

Theorem: If $a, b, c, d$ form a CCW convex polygon, then $d$ lies in the circle determined by $a, b$, and $c$ iff:

Proof:

$$
\operatorname{det}\left(\begin{array}{cccc}
a_{x} & a_{y} & a_{x}^{2}+a_{y}^{2} & 1 \\
b_{x} & b_{y} & b_{x}^{2}+b_{y}^{2} & 1 \\
c_{x} & c_{y} & c_{x}^{2}+c_{y}^{2} & 1 \\
d_{x} & d_{y} & d_{x}^{2}+d_{y}^{2} & 1
\end{array}\right)>0
$$

We prove that equality holds if the points are cocircular.
There exists a center $q$ and radius $r$ such that:

$$
\left(a_{x}-q_{x}\right)^{2}+\left(a_{y}-q_{y}\right)^{2}=r^{2}
$$

Similarly for $b, c, d$.
In vector notation:

$$
\left(\begin{array}{l}
a_{x}^{2}+a_{y}^{2} \\
b_{x}^{2}+b_{y}^{2} \\
c_{x}^{2}+c_{y}^{2} \\
d_{x}^{2}+d_{y}^{2}
\end{array}\right)-2 q_{x}\left(\begin{array}{l}
a_{x} \\
b_{x} \\
c_{x} \\
d_{x}
\end{array}\right)-2 q_{y}\left(\begin{array}{l}
a_{y} \\
b_{y} \\
c_{y} \\
d_{y}
\end{array}\right)+\left(q_{x}^{2}+q_{y}^{2}-r^{2}\right)\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)=0
$$

So these four vectors are linearly dependent, and hence their determinant vanishes.

Corollary: $d \in \circ(a, b, c)$ iff $b \in \circ(a, c, d)$ iff $c \in \circ(b, a, d)$ iff $a \in \circ(b, c, d)$. Center for Graphics and Geometric Computing, Technion

## Naive Delaunay Algorithm

$\square$ Start with an arbitrary triangulation.
Flip any illegal edge until no more exist.


## Naive Delaunay Algorithm (cont.)

$\square$ Question: Why does the algorithm terminate?
$\square$ Answer: Because every flip increases the vector angle, and there are finitely-many such vectors.
$\square$ However, this algorithm is in practice very slow.
$\square$ Question: Why does the algorithm converge to the optimum triangulation?
$\square$ Answer: Because there are no local maxima (proof deferred).

## Delaunay Triangulation by Duality

$\square$ Draw the Delaunay graph (the dual graph of the Voronoi diagram) by connecting each pair of neighboring sites in the Voronoi diagram.
$\square$ If no four points are cocircular, then all faces in the Delaunay graph are triangles.

- General position assumption:

There are no four cocircular points.
$\square$ We need to prove:

- Correctness of this duality. I.e., drawing the Delaunay graph with straight segments does not cause any segment intersection.
- This triangulation indeed maximizes the angle vector (and, hence, it is the Delaunay triangulation).
$\square$ Corollary: The Delaunay triangulation (DT) of $n$ points can be computed in $\mathrm{O}(n \log n)$ time.



## Proof of Planarity of Delaunay Triangulation

$\square$ Let $S$ be a set of sites, and let $\mathrm{DT}(S)$ be the dual graph of $\mathrm{VD}(S)$.
$\square$ Let $p_{i} p_{j}$ be an edge of $\operatorname{DT}(S)$. It is so because cells of $p_{i}$ and $p_{j}$ in $\mathrm{VD}(S)$ are neighbors in $\mathrm{VD}(S)$. Hence, there exists an empty circle
 passing through $p_{i}, p_{j}$ and whose center $o_{i j}$ is on their bisector (the edge of $\mathrm{VD}(S)$ separating between the cells of $p_{i}$ and $p_{j}$ ).
$\square$ Assume for contradiction that $p_{i} p_{j}$ intersects another edge $p_{k} p_{l}$ in DT(S).
$\square$ Observe the possible interactions between the triangles $\Delta o_{i j} p_{i} p_{j}$ and $\Delta o_{k l} p_{k} p_{l} \ldots$ (next slide)


## Planarity Proof (cont.)

$\square$ Case A (one triangle contains a yellow vertex of the other triangle):
Impossible, since the circumscribing circle of the first triangle is empty, hence also the triangle.

$\square$ Case B (no triangle contains a vertex of the other triangle):
Cannot avoid an intersection of a pair of white edges, which is impossible, because the white edges are fully contained in disjoint Voronoi cells.

$\square$ Case C (one triangle contains a green vertex of the other triangle) is possible. Question: Why isn't it a contradiction?


## Delaunay Triangulation: Main Property

## Theorem:

Let $S$ be a set of points in the plane. Then,
(i) $p_{i}, p_{j}, p_{k} \in S$ are vertices of a triangle (face) of $\mathrm{DT}(S)$
$\leftrightarrow \quad$ The circle passing through $p_{i}, p_{j}, p_{k}$ is empty;
(ii) $\overline{p_{i}, p_{j}}\left(\right.$ for $p_{i}, p_{j} \in S$ ) is an edge of DT(S)
$\leftrightarrow \quad$ There exists an empty circle passing through $p_{i}, p_{j}$.
$\square$ Proof: Dualize the Voronoi-diagram theorem.

- Corollary:

A triangulation $\mathrm{T}(S)$ is $\mathrm{DT}(S)$
$\leftrightarrow \quad$ Every circumscribing circle of a triangle $\Delta \in T(S)$ is empty.

## Wrapping Up

$\square$ Theorem:
Let $S$ be a set of points in the plane, and let $T(S)$ be a triangulation of $S$. Then, $\mathrm{T}(\mathrm{S})=\mathrm{DT}(S) \leftrightarrow \mathrm{T}(\mathrm{S})$ is legal.
$\square$ Proof: Follows from the definitions of a legal edge and triangulation. (Exercise!)

Corollary: DT(S) maximizes the vector angle.
$\square$ Since $\mathrm{DT}(S)$ is unique, there is only one legal triangulation, and thus, there are no local maxima in the edge-flip algorithm. Hence, the algorithm converges to DT(S).


## An O( $n \log n$ )-Time Delaunay Algorithm

A Randomized incremental algorithm:
$\square$ Form a bounding triangle $\Delta_{0}$ enclosing all points.
$\square$ Add the points one after another in a random order and update the triangulation.
$\square$ If the point is inside an existing triangle:

- Connect the point to the triangle vertices.
- Check if a flip can be performed on any of the three triangle edges. If so, flip the edge and check recursively the neighboring edges (opposite to the new point).
$\square$ If the site is on an existing edge:
- Replace the edge with four new edges.
- Check if a flip can be performed on any of the opposite edges. If so, flip the edge and check recursively the neighboring edges (opposite to the new point).


## Flipping Edges

$\square$ A new point $p_{r}$ was added, causing the creation of the edges $p_{i} p_{r}$ and $p_{j} p_{r}$.The legality of the edge $p_{i} p_{j}$ (with opposite vertex) $p_{k}$ is checked.If $p_{i} p_{j}$ is illegal, perform a flip, and recursively check edges $p_{i} p_{k}$ and $p_{j} p_{k}$, the new edges opposite to $p_{r}$.Notice that the recursive call for $p_{i} p_{k}$ cannot eliminate the edge $p_{r} p_{k}$.
$\square$ Note: All edge flips replace edges opposite to the new vertex by edges adjacent to it!



## Number of Triangles

$\square$ Theorem: The expected number of triangles created in the course of the algorithm (some of which also disappear) is at most $9 n+1$.
$\square$ Proof:
During the insertion of point $p_{i}, k_{i}$ new edges are created: 3 new initial edges, and $k_{i}-3$ due to flips. Hence, the number of new triangles is at most $3+2\left(k_{i}-3\right)=2 k_{i}-3$. (A point on an edge results in $2 k_{i}-4$ triangles.)
What is the expected value of $k_{i}$ ?


## Number of Triangles (cont.)

$\square$ Recall that the Voronoi diagram has at most $3 N-6$ edges, where $N$ is the number of vertices.
$\square$ The number of edges in a graph and its dual are identical.
$\square$ Taking into account the initial triangle $\Delta_{0}$, after inserting $i$ points, there are at most $3(i+3)-6=3 i+3$ edges.
Three of them belong to $\Delta_{0}$, so we are left with at most $3 i$ internal edges that are adjacent to the input points.


## Number of Triangles (cont.)

The sum of all vertex degrees is thus at most $2 \cdot 3 i=6 i$.
$\square$ On the average, the degree of each vertex is only 6 ! But this is exactly the number of new edges!
Hence, the expected number of triangles created in the $i$ th step is at most $\mathrm{E}\left(2 k_{i}-3\right)=2 \mathrm{E}\left(k_{i}\right)-3=9$.
$\square$ Therefore, the expected number of triangles created (and possibly destroyed) for $n$ points is $9 n+1$. (One initial bounding triangle plus 9 triangles on average per point.)




## Relatives of the Delaunay Triangulation

$\square$ Euclidean Minimum Spanning Tree (EMST):
A tree of minimum length connecting all the sites.
$\square$ Relative Neighborhood Graph (RNG):
Two sites $p, q$ are connected if
$d(p, q) \leq \min _{r \in P, r \neq p, q} \max (d(p, r), d(q, r))$
$\square$ Gabriel Graph (GG):
Two sites $p, q$ are connected if the circle whose diameter is $p q$ is empty of other sites.
$\square$ Theorem: $\mathrm{EMST} \subseteq \mathrm{RNG} \subseteq \mathrm{GG} \subseteq \mathrm{DT}$.


## Proof of Lift-Up Method

$\square$ The intersection of a plane with the paraboloid is an ellipse whose projection to the plane is a circle.
$\square s$ lies within the circumcircle of $p, q, r$ iff $s^{\prime}$ lies on the lower side of the plane passing through $p^{\prime}, q^{\prime}, r^{\prime}$.
$p, q, r \in S$ form a Delaunay triangle iff $p^{\prime}, q^{\prime}, r^{\prime}$ form a face of the convex hull of $S^{\prime}$.


## More about Lifting Up

$\square$ Given a set $S$ of points in the plane, associate with each point $p=(a, b) \in S$ the plane $z=2 a x+2 b y-\left(a^{2}+b^{2}\right)$, which is tangent to the paraboloid at $p^{\prime}$, the vertical projection of $p$ onto the paraboloid.
$\square \mathrm{VD}(S)$ is the vertical projection

onto the XY plane of the boundary of the convex polyhedron that is the intersection of the halfspaces above these planes.


