Computational Geometry (CS 236719)

http://www.cs.technion.ac.il/~barequet/teaching/cg/fa12

Chapter 1 Introduction

Copyright 2002-2012

Prof. Gill Barequet

Center for Graphics and Geometric Computing Dept. of Computer Science The Technion Haifa

Thanks to Michal Urbach-Aharon who prepared the initial version of the presentations of this course.

Staff (Fall 2012-13)

Lecturer: Prof. Gill Barequet □ Tel. (office): (04) 829-3219 □ TA: Mr. Maor Grinberg E-mail: {<u>barequet</u>,maorg}@cs.technion.ac.il • Office hours: Any time (by appointment) Lecture: Tuesday 10:30-12:30 (Taub 4) □ Recitation: Tuesday ??:30-??:30 (Taub ???) Exams: Moed A: Tuesday, February 5, 2013 Moed B: To be fixed (hopefully no need to)

Bibliography	
Computational Geometry: Algorithms and Applications,	
M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf,	
3 rd edition, Springer-Verlag, 2008.	
Computational Geometry in C,	

J. O'Rourke, 2nd edition, Cambridge Univ. Press, 2000.

□ Course slides

Assessment

□ 3-4 homework assignments (~12.5%)

□ One wet (running) exercise (~12.5%)

□ No midterm exam

□ Final exam (75%)

Syllabus

- Introduction
- Basic techniques
- Basic data structures
- Polygon triangulation
- Linear programming
- Range searching
- Point location
- Voronoi diagrams
- Duality and Arrangements
- Delaunay triangulations
- Applications and miscellaneous

Prerequisite course:

Data Structures and Algorithms

Questions?

Lecture Topics

Sample problems
Basic concepts
Convex-hull algorithms

Sample Problems

Convex Hull demo

Voronoi Diagram demo

Visibility demo

Nearest Neighbor

□ Problem definition:

- Input: A set of points (*sites*) P in the plane and a query point q.
- Output: The point $p \in P$ closest to q among all points in P.

□ Rules of the game:

One point set, multiple queries

Application: Cellphones Store Locator \bigcirc

 $\bigcirc P$

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

 \bigcirc

The Voronoi Diagram

□ Problem definition:

Input: A set of points (*sites*) S in the plane.

Output: A planar subdivision S into cells, one per site. The cell corresponding to $p \in P$ contains all the points to which p is the closest.

Point Location

□ Problem definition:

Input: A partition S of the plane into cells and a query point p.

Output: The cell $C \in S$ containing p.

 Rules of the game:
 One partition, multiple queries
 Applications: Nearest neighbor State locator

Point in Polygon

□ Problem definition:

- Input: A polygon P in the plane and a query point p.
- Output: *true* if $p \in P$, else *false*.

□ Rules of the game:

One polygon, multiple queries

Shortest Path

□ Problem definition:

- Input: Obstacles locations and *query* endpoints *s* and *t*.
- Output: The shortest path between s and t that avoids all obstacles.

- □ Rules of the game:
 - One obstacle set, multiple queries (*s*,*t*).

□ Application: Robotics.

Range Searching and Counting

□ Problem definition:

Input: A set of points P in the plane and a query rectangle R.

Output:

(report) The subset $Q \subseteq P$ contained in R; or (count) The cardinality of Q.

□ Rules of the game:

One point set, multiple queries.

□ Application: Urban planning

Visibility

□ Problem definition:

- Input: A polygon P in the plane and a query point p.
- Output: The polygon $Q \subseteq P$ containing all points in *P* visible to *p*.

□ Rules of the game:

- One polygon, multiple queries
- □ Applications: Security

Questions?

Basic Concepts

Representing Geometric Elements

- Representation of a line segment by four real numbers:
 - Two endpoints (p_1 and p_2)
 - One endpoint (p_1) , vector direction (v) and parameter interval length (d)
 - (Question: where did the extra parameter come from?)
 - One endpoint (p_1) , a slope (α) , and length (d)
 - Other options...
 - Unique representation?

Different representations may affect the running times of algorithms!

 p_2

Ω

 p_1

- □ The sign of the area indicates the orientation of the points.
- **D** Positive area = counterclockwise orientation = left turn.
- □ Negative area = clockwise orientation = right turn.
- Question: How can this be used to determine whether a given point is "above" or "below" a given line? (Hint: or a line segment?)
 (Degenerate instances?)

Center for Graphics and Geometric Computing, Technion

20

Complexity (reminder)

Symbol	Definition	"Nickname"
$f(n) = \mathcal{O}(g(n))$	$\exists N, C \forall n > N f(n)/g(n) \leq C$	"≤"
f(n) = o(g(n))	$\lim_{n\to\infty} f(n)/g(n) = 0$	"<"
$f(n) = \Theta(g(n))$	f(n) = O(g(n)) and g(n) = O(f(n))	"="
$f(n) = \Omega(g(n))$	g(n) = O(f(n))	"≥"
$f(n) = \omega(g(n))$	g(n) = o(f(n))	">"

Convex Hull Algorithms

Convexity and Convex Hull

Definition: A set S is *convex* if for any pair of points $p,q \in S$, the entire line segment $pq \subseteq S$.

- □ The *convex hull* (קמור) of a set S is the minimal convex set that contains S.

convex non-convex

- □ Another (equivalent) definition: The intersection of all convex sets that contain S.
- **Question:** Why should the boundary of the convex hull of a point set be a polygon whose vertices are a subset of the points?

Convex Hull: Naive Algorithm

Description:

- For each pair of points construct its connecting segment and supporting line.
- Find all the segments whose supporting lines divide the plane into two halves, such that one half plane contains *all* the other points.
- Construct the convex hull out of these segments.

□ Time complexity (for *n* points):

Number of point pairs:

 $\binom{n}{2} = \Theta(n^2)$

• Check all points for each pair: $\Theta(n)$

Total: $\Theta(n^3)$

□ Space complexity: $\Theta(n)$

Possible Pitfalls

 \bigcirc

 \bigcirc

 Degenerate cases, e.g., 3 collinear points, may harm the correctness of the algorithm.
 All, or none, of the segments AB, BC and AC will be included in the convex hull.

Question: How can we solve the problem?

Question: How is collinearity detected?

В

Convex Hull: Graham's Scan

□^I Algorithm:

- Sort the points according to their *x* coordinates.
- Construct the upper boundary by scanning the points in the sorted order and performing only "right turns" (trim off "left turns").
- Construct the lower boundary in the same manner.
- Concatenate the two boundaries.
- $\Box \text{ Time Complexity: } O(n \log n) \text{ (only!)}$
- May be implemented using a stack

Question: How do we check for a "right turn"?

The Algorithm

□ Input: Point set {p_i}.
□ Sort the points in increasing order of x coordinates: p₁, ..., p_n.
□ Push(S,p₁); Push(S,p₂);
□ For i = 3 to n do
■ While Size(S) ≥ 2 and Orient(p_i,top(S),second(S)) ≤ 0 do Pop(S);
■ Push(S,p_i);

Output *S*.

Graham's Scan: Time Complexity

Given Sorting: $O(n \log n)$

□ If D_i is the number of points popped on processing p_i ,

time =
$$\sum_{i=1}^{n} (D_i + 1) = n + \sum_{i=1}^{n} D_i$$

□ Naively, the last term can be quadratic in *n*; But...

Each point is pushed on the stack only **once**.

Once a point is popped, it cannot be popped again.

$$\Box$$
 Hence, $\sum_{i=1}^n D_i \le n$.

Graham's Scan: Rotational Variant

□ Algorithm:

- Find a point, p_0 , which **must** be on the convex hull (e.g., the leftmost point).
- Sort the other points by the angle of the rays shot to them from p₀.

Question: Is it necessary to compute the actual angles? If not, how can we sort?

Construct the convex hull using one traversal of the points.

\Box Time Complexity: O(*n* log *n*)

Question: What are the pros and cons of this algorithm relative to the previous one?

Convex Hull: Divide and Conquer

Algorithm:

- Find a point with a median x coordinate (time: O(n))
- Compute the convex hull of each half (recursive execution)
- Combine the two convex hulls by finding common tangents.

Question: How can this be done in <u>*O*(*n*)</u> time?

□ Time Complexity:

 $O(n \log n)$

 $T(n) = 2T\left(\frac{n}{2}\right) + O(n)$

Convex Hull: Gift Wrapping

☐ Algorithm:

- Find a point p₁ on the convex hull (e.g., the lowest point).
- Rotate counterclockwise a line through p₁ until it touches one of the other points (start from a horizontal orientation).

Question: How is this done?

- Repeat the last step for the new point.
- Stop when p_1 is reached again.
- □ Time Complexity: O(*nh*), where *n* is the input size and *h* is the output (hull) size.
- □ Since $3 \le h \le n$, time is $\Omega(n)$ and $O(n^2)$.

General Position

- When designing a geometric algorithm, we first make some simplifying assumptions (that depend on the problem and on the algorithm!), e.g.:
 - No 3 collinear points;
 - No two points with the same x coordinate.
- Later, we consider the general case:
 - How should the algorithm react to degenerate cases?
 - Will the correctness be preserved?
 - Will the running time remain the same?

Lower Bound for Convex Hull

- A reduction from Sorting to convex hull:
 - Given *n* real values x_i , generate *n* points on the graph of a convex function, e.g., a parabola, (x_i, x_i^2) .
 - Compute the (ordered) convex hull of the points.
 - The order of the points on the convex hull the same order of the x_i.
- $\Box \text{ So Complexity(CH)} = \Omega(n \log n)$
- □ Due to the existence of $O(n \log n)$ -time algorithms, Complexity(CH)= $\Theta(n \log n)$

