Computational Geometry (CS 236719)

http://www.cs.technion.ac.il/~barequet/teaching/cg/fa12

Chapter 1
Introduction

Copyright 2002-2012

Prof. Gill Barequet

Center for Graphics and Geometric Computing Dept. of Computer Science

The Technion
Haifa

Thanks to Michal Urbach-Aharon who prepared the initial version of the presentations of this course.

Staff (Fall 2012-13)

\square Lecturer: Prof. Gill Barequet
\square Tel. (office): (04) 829-3219
\square TA: Mr. Maor Grinberg
\square E-mail: \{barequet,maorg\}@cs.technion.ac.il
\square Office hours: Any time (by appointment)
\square Lecture: Tuesday 10:30-12:30 (Taub 4)
Recitation: Tuesday ??:30-??:30 (Taub ???)
\square Exams: Moed A: Tuesday, February 5, 2013
Moed B: To be fixed
(hopefully no need to)

Bibliography

\square Computational Geometry: Algorithms and Applications,
M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf, $3^{\text {rd }}$ edition, Springer-Verlag, 2008.
\square Computational Geometry in C,
J. O'Rourke,
$2^{\text {nd }}$ edition, Cambridge Univ. Press, 2000.
\square Course slides

Assessment

\square 3-4 homework assignments (~12.5\%)
\square One wet (running) exercise ($\sim 12.5 \%$)
\square No midterm exam
\square Final exam (75\%)

Syllabus

\square Introduction
\square Basic techniques
\square Basic data structures
\square Polygon triangulation
\square Linear programming
\square Range searching

Prerequisite course:
Data Structures and Algorithms

- Point location
- Voronoi diagrams
\square Duality and Arrangements
- Delaunay triangulations
\square Applications and miscellaneous

Questions?

Lecture Topics

\square Sample problems
\square Basic concepts
\square Convex-hull algorithms

Sample Problems

Convex Hull demo
Voronoi Diagram demo

Visibility demo

Nearest Neighbor

\square Problem definition:

- Input: A set of points (sites) P in the plane and a query point q.
- Output: The point $p \in P$ closest to q among all points in P.
\square Rules of the game:
- One point set, multiple queries
\square Application: Cellphones Store Locator

The Voronoi Diagram

\square Problem definition:

- Input: A set of points (sites) S in the plane.
- Output: A planar subdivision S into cells, one per site. The cell corresponding to $p \in P$ contains all the points to which p is the closest.

Point Location

\square Problem definition:

- Input: A partition S of the plane into cells and a query point p.
- Output: The cell $C \in S$ containing p.
\square Rules of the game:
- One partition, multiple queries
\square Applications: Nearest neighbor State locator

Point in Polygon

\square Problem definition:

- Input: A polygon P in the plane and a query point p.
- Output: true if $p \in P$, else false.

\square Rules of the game:
- One polygon, multiple queries

Shortest Path

\square Problem definition:

- Input: Obstacles locations and query endpoints s and t.
- Output: The shortest path between s and t that avoids all obstacles.
\square Rules of the game:
- One obstacle set, multiple queries (s, t).
\square Application: Robotics.

Range Searching and Counting

- Problem definition:
- Input: A set of points P in the plane and a query rectangle R.
- Output:
(report) The subset $Q \subseteq P$ contained in R; or (count) The cardinality of Q.

\square Rules of the game:
- One point set, multiple queries.
\square Application: Urban planning

Visibility

\square Problem definition:

- Input: A polygon P in the plane and a query point p.
- Output: The polygon $Q \subseteq P$ containing all points in P visible to p.

\square Rules of the game:
- One polygon, multiple queries
\square Applications: Security

Questions?

Basic Concepts

Representing Geometric Elements

\square Representation of a line segment by four real numbers:

- Two endpoints (p_{1} and p_{2})
- One endpoint $\left(p_{1}\right)$, vector direction (v) and parameter interval length (d)
(Question: where did the extra parameter come from?)

- One endpoint $\left(p_{1}\right)$, a slope (α), and length (d)
- Other options...
- Unique representation?
\square Different representations may affect the running times of algorithms!

Orientation

$$
\text { Area }=\frac{1}{2}\left|\begin{array}{lll}
x_{1} & y_{1} & 1 \\
x_{2} & y_{2} & 1 \\
x_{3} & y_{3} & 1
\end{array}\right|
$$

\square The sign of the area indicates the orientation of the points.
\square Positive area \equiv counterclockwise orientation \equiv left turn.
\square Negative area \equiv clockwise orientation \equiv right turn.
\square Question: How can this be used to determine whether a given point is "above" or "below" a given line? (Hint: or a line segment?)
(Degenerate instances?)

Complexity (reminder)

Symbol	Definition	"Nickname"
$f(n)=O(g(n))$	$\exists N, C \forall n>N f(n) / g(n) \leq C$	$" \leq "$
$f(n)=0(g(n))$	$\lim _{n \rightarrow \infty} f(n) / g(n)=0$ $f(n)=\Theta(g(n))$$f(n)=O(g(n))$ and $g(n)=O(f(n))$	$"="$
$f(n)=\Omega(g(n))$	$g(n)=O(f(n))$	$" \geq "$
$f(n)=\omega(g(n))$	$g(n)=O(f(n))$	$">"$

Convex Hull Algorithms

Convexity and Convex Hull

- Definition: A set S is convex if for any pair of points $p, q \in S$, the entire line segment $p q \subseteq S$.
- The convex hull (קְמוֹ) of a set S is the minimal

convex
 convex set that contains S.
- Another (equivalent) definition: The intersection of all convex sets that contain S.

Question: Why should the boundary of the convex hull of a point set be a polygon whose vertices are a subset of the points?

Convex Hull: Naive Algorithm

- Description:
- For each pair of points construct its connecting segment and supporting line.
- Find all the segments whose supporting lines divide the plane into two halves, such that one half plane contains all the other points.
- Construct the convex hull out of these segments.

Time complexity (for n points):

- Number of point pairs:

$$
\binom{n}{2}=\Theta\left(n^{2}\right)
$$

- Check all points for each pair: $\Theta(n)$

Total: $\Theta\left(n^{3}\right)$

- Space complexity: $\Theta(n)$

Possible Pitfalls

- Degenerate cases, e.g., 3 collinear points, may harm the correctness of the algorithm. All, or none, of the segments $A B, B C$ and $A C$ will be included in the convex hull.
Question: How can we solve the problem?
\square Numerical problems: We might conclude that none of the three segments (or a wrong pair of them) belongs to the convex hull.
\square Question: How is collinearity detected?

Convex Hull: Graham’s Scan

Algorithm:

- Sort the points according to their x coordinates.
- Construct the upper boundary by scanning the points in the sorted order and performing only "right turns" (trim off "left turns").
- Construct the lower boundary in the same manner.
- Concatenate the two boundaries.
\square Time Complexity: $\mathrm{O}(n \log n$) (only!)
\square May be implemented using a stack
\square Question: How do we check for a "right turn"?

The Algorithm

\square Input: Point set $\left\{p_{i}\right\}$.
\square Sort the points in increasing order of x coordinates:

$$
p_{1}, \ldots, p_{n}
$$

$\square \operatorname{Push}\left(S, p_{1}\right) ; \operatorname{Push}\left(S, p_{2}\right)$;
\square For $i=3$ to n do

- While $\operatorname{Size}(S) \geq 2$ and $\operatorname{Orient}\left(p_{;} ; \operatorname{top}(S)\right.$, second $\left.(S)\right) \leq 0$ do Pop(S);
- Push $\left(S, p_{i}\right)$;
\square Output S.

Graham's Scan: Time Complexity

- Sorting: $\mathrm{O}(n \log n)$

If D_{i} is the number of points popped on processing p_{i},

$$
\text { time }=\sum_{i=1}^{n}\left(D_{i}+1\right)=n+\sum_{i=1}^{n} D_{i}
$$

- Naively, the last term can be quadratic in n; But...

E Each point is pushed on the stack only once.
O Once a point is popped, it cannot be popped again.

- Hence, $\sum_{i=1}^{n} D_{i} \leq n$.

Graham's Scan: Rotational Variant

\square Algorithm:

- Find a point, p_{0}, which must be on the convex hull (e.g., the leftmost point).
- Sort the other points by the angle of the rays shot to them from p_{0}.
Question: Is it necessary to compute the actual angles? If not, how can we sort?
- Construct the convex hull using one traversal of the points.
\square Time Complexity: O($n \log n$)

\square Question: What are the pros and cons of this algorithm relative to the previous one?

Convex Hull: Divide and Conquer

- Algorithm:
- Find a point with a median x coordinate (time: $\mathrm{O}(n)$)
- Compute the convex hull of each half (recursive execution)
- Combine the two convex hulls by finding common tangents.
Question: How can this be done in $O(n)$ time?
Time Complexity:

$\mathrm{O}(n \log n)$

Convex Hull: Gift Wrapping

\square Algorithm:

- Find a point p_{1} on the convex hull (e.g., the lowest point).
- Rotate counterclockwise a line through p_{1} until it touches one of the other points (start from a horizontal orientation).
Question: How is this done?
- Repeat the last step for the new point.
- Stop when p_{1} is reached again.

\square Time Complexity: $O(n h)$, where n is the input size and h is the output (hull) size.
\square Since $3 \leq h \leq n$, time is $\Omega(n)$ and $O\left(n^{2}\right)$.

General Position

\square When designing a geometric algorithm, we first make some simplifying assumptions (that depend on the problem and on the algorithm!), e.g.:

- No 3 collinear points;
- No two points with the same x coordinate.
\square Later, we consider the general case:
- How should the algorithm react to degenerate cases?
- Will the correctness be preserved?
- Will the running time remain the same?

Lower Bound for Convex Hull

\square A reduction from Sorting to convex hull:

- Given n real values x_{i} generate n points on the graph of a convex function, e.g., a parabola, $\left(x_{i} x_{i}^{2}\right)$.
- Compute the (ordered) convex hull of the points.
- The order of the points on the convex hull the same order of the x_{i}
\square So Complexity $(\mathrm{CH})=\Omega(n \log n)$

\square Due to the existence of
$\mathrm{O}(n \log n)$-time algorithms, Complexity $(\mathrm{CH})=\Theta(n \log n)$

